
DOCUMENTATION FOR THE REAL WORLD:
Simple, Timely, and Effective!

Originally presented at the 1989 Interex Computing Management Symposium
Nashville, TN March 8-10, 1989

A. Marvin McInnis
5250 W. 94th Terrace, #114
Prairie Village, KS 66207

INTRODUCTION

Documentation has long been the stepchild of software development. It is commonly postponed
until the final phases of a project, and all too often it is postponed forever. Technical
documentation is often inaccurate, incomplete, and/or incomprehensible, and user manuals, when
written, are frequently unusable for their intended purpose. In extreme cases, it becomes
impossible to determine from the documentation whether software is functioning correctly or not!

This paper presents a system of documentation, incorporating ideas from a number of sources,
which has proven to be very effective in producing useful, accurate, and timely documentation.
The essential ideas are that appropriate documentation is an important aspect of a successful
project, and that the documentation should be an integral part of the project and not a separate
activity. Managers may be surprised to discover that an integrated documentation plan can actually
�decrease� the development time of a project. Other benefits are clearer completion criteria,
improved software quality control, increased user acceptance, and reduced maintenance.

WHAT IS "GOOD" DOCUMENTATION?

The ultimate purpose of software documentation is to facilitate understanding of what the software
is supposed to do and how it is supposed to do it. We can usually recognize good documentation
when we see it, but despite all that has been written, it is still difficult to define what determines its
"goodness." Quite simply, creating good documentation remains an elusive art, but we can identify
several characteristics of good documentation:

• Appropriateness: Good documentation is appropriate to the complexity of a
software system and its intended use. Clearly, the documentation requirement for a
programmer's toolkit utility is different than for production software or software for
non technical users.

• Clarity and Accuracy: Good documentation is both understandable and technically

accurate. This implies that documentation must address several different levels of
detail; the documentation needed by a non-technical user is very different from that
needed by a maintenance programmer.

• Timeliness: Good documentation is timely. User manuals or technical
documentation which do not accurately reflect the current state of the software are
of severely limited value. Even worse are user manuals which appear only after the
users have developed their own superstitious, trial and error understanding of the
system.

• Careful preparation: Good documentation is carefully prepared and well written.

Manuals which are poorly written or otherwise difficult to use won't be used very
often, which is not much better than no manuals at all.

• Consistency: Good documentation is both logically and stylistically consistent.

Consistency is essential to allow a both technical and non technical users to
correlate the contents of documents at different levels of detail. Logical
consistency simply means that all documents should reflect the same concepts and
ideas, while stylistic consistency implies that these concepts and ideas should be
expressed in a uniform way from one document to the next.

• Flexibility: Finally, good documentation should be flexible and dynamic, rather

than static. Documentation must easily be changed, always remaining "in sync"
with the software as the system is developed, released, maintained, and enhanced.

HIDDEN BENEFITS OF GOOD DOCUMENTATION

We all know the reasons why projects should be documented, but I would like to suggest several
less obvious benefits of adopting an integrated documentation program.

A good documentation plan can involve end users early in a project, and the result can be software
which is better suited to users' actual needs and more readily accepted by them. Good
documentation, produced early in the development cycle, can minimize problems due to
misunderstandings among users, managers, and the technical staff.

Good documentation will almost always result in a shorter development cycle, better software
quality, faster testing, and reduced debugging. This is important to you as managers: a good
documentation program will reduce software development time even when compared with the case
of no documentation at all, and it will probably reduce the total development cost as well.

In his excellent presentation "The Seven Secrets of Successful Software Project Management" at
the 1988 Interex Computing Management Symposium, Vaughn Mantor made the interesting
observation that a common problem of software development is that no ever knows when the
project is finished! Good documentation can help resolve this dilemma: when the software is
demonstrated to perform in accordance with the documentation, the initial development project is
complete. This means that not only must the data be handled correctly, in accordance with the
functional specifications, but the user interface also must function correctly and in accordance with
the user manuals.

Good documentation can also benefit both the purchaser and the vendor of a commercial software
product:

For the purchaser, the quality of the documentation will usually be a reliable indicator of software
quality. Good documentation can define the acceptance criteria for a software product, and it can
reduce the purchaser's dependence on the vendor's support services for the life of the product.

For the vendor, good documentation can be a very effective marketing tool, will increase customer
satisfaction with the product, and can reduce the cost of customer support. The explicit use of
documentation as acceptance criteria for a software product is as desirable for the vendor as for the
purchaser: performance in accordance with the documentation can obviate most disputes over
product acceptance.

BUILDING BLOCKS OF GOOD DOCUMENTATION

Although the details will vary depending on the needs of your organization, there are five
fundamental components of any good documentation system:

1) Programming and documentation standards

2) Functional specifications

3) User manuals

4) Technical documentation

5) Program source code

Note that there are two generic varieties of user manuals, the reference manual and the tutorial, and
most software will require both. The primary purpose of the reference manual is to provide
accurate and detailed information on using the software for experienced users. Conversely, the
tutorial should be a self-study introduction to the software, and it should assume that the user has
little or no experience with the subject matter. Since the user tutorial and reference manuals are
intended for completely different purposes, it is a good idea not to combine them into a single
manual.

FIVE STEPS TO EFFECTIVE DOCUMENTATION

Just having each of the components in place doesn't constitute a good documentation plan unless
they are coordinated with each other in a systematic way. Below are five steps, developed over a
number of years, which provide a simple and effective documentation system. This system works.
It has proven successful for a number of my clients, and I recommend that you try it:

1) Develop documentation standards and make a commitment to documentation.

2) Write the user reference manual first, and make it a part of the project functional

specifications

3) Develop the technical documentation in a three-level hierarchy

4) Make the documentation, not the software itself, the key items of project control

5) Validate the documentation as well as the software during testing

Note that the basis of this system is the "top down" development model: the documentation at any
given level should be well defined before any work is started at a lower (more detailed) level. For
example, rather than being left until last, drafting the user reference manual should be one of the
first activities in the software development cycle. If you are already using the "top down" model
for your software development, this system of documentation will be especially easy to adopt.

DEVELOPING DOCUMENTATION STANDARDS

A documentation system just won't work without some kind of standards. And while most
organizations have established programming standards, few have any standards at all (the worst
kind of standards) for documentation.

Don't misunderstand. I'm not suggesting that you adopt an elaborate and rigid set of documentation
standards, but rather that you begin now to develop an evolutionary set of standards appropriate to
your organization and your software projects. The very existence of standards will be beneficial,
because they establish the importance of documentation in your organization and confirm the
commitment to it

Documentation standards can serve several purposes, but the key ideas here are that you should
adopt standards of some kind and that those standards should be appropriate to your organization.
At the very minimum, documentation standards should:

• State the goals of the documentation plan

• Define the "deliverable" documents for different categories of software, the

relationships among these documents, and when they will be required

• Establish minimum standards for content of each required document

• Provide guidelines for style and content (including examples) which will promote
clarity and consistency

If your organization doesn't have any documentation standards at the present time, start developing
them now! Begin with very simple, easy to follow, standards. Then try to keep them simple,
adding to them only when necessary.

MAKING A COMMITMENT TO DOCUMENTATION

A documentation plan will surely fail if there is not a management commitment, at all levels of
your organization, to its success. As a manager, you will play an important part in this success.

The employees you manage must understand that good documentation is as important to the
success of the project as good design and good coding. And they must trust that you will continue
to support the importance of their documentation efforts, even when things get rough.

The commitment to documentation will occasionally require courage on your part: the courage to
say "No, the project will not be released until it is finished," adding documentation to your
completion criteria.

In short, in order to be successful you need to have a clear idea of why documentation is important
to your organization, be willing to support it before your employees, and be willing to defend it
before your managers.

WITE THE USER REFERENCE MANUAL FIRST!

This is the most important idea that I have to share with you here: WRITE THE USER
REFERENCE MANUAL FIRST!

The user reference manual is the one document defining a system that can be understood by
everyone involved in the project: users, managers, analysts, and programmers alike. For this
reason, a working draft of the user reference manual should be written as early in the
project as possible, and this draft manual should be a part of the project functional specifications.

The user reference manual should be an exact representation of the way the system will appear to
users. In purely functional terms, users should be able to view the system entirely in the context of
the reference manual; the system internals should be "black box" entities totally transparent to
users.

Besides being an important system design document, the user reference manual also provides a
good control mechanism for system design changes which will affect the users. If technical
changes will result in changes to the user reference manual, which implies that user approval will
be required, the manual functions to allow all parties to understand the affect of the changes on
their ÿrequirements. Conversely, when changes are requested by the users, they can submit their
requests in the context of changes to the manual.

The format and content of the user reference manual will vary, depending on the organization and
the specific project, but I recommend that it include at least three separate sections:

1) An index based on the user's view of the system (i.e. an index organized by user job
function rather than by software module function) which defines user access
capabilities available and refers to the appropriate pages in the other two sections of
the manual

2) Screen formats and report layouts

3) Procedure descriptions, including a summary of user interaction and expected

results, for each screen and report

The last two sections can be combined into one if desired, but I prefer to keep them separate. The

procedure descriptions are usually much easier to work with when the screen layouts can be viewed
side by side with them.

See figures 1 through 3 for examples taken from a draft user reference manual which was written
for an actual system functional specification.

WRITING GOOD USER MANUALS

No doubt about it, writing good user manuals is an art. But it is an art which can be learned by
most people. Although a thorough treatment of how to write good user manuals is far beyond the
scope of this presentation, I would like to recommend to you what is absolutely the best reference I
have seen on the subject, and one of the simplest. It was originally written for internal use at the
Jet Propulsion Laboratory (NASA), but is now available from The Society of Technical
Communication:

"Guidelines for Preparing Software User Documentation"
by Diane F. Miller

available from:

The Society of Technical Communication
815 15th Street NW
Washington, DC 20005
Attn: Mary Johnson (202) 737-0035

ISBN book number 0-914548-57-3
STC book number STC-133-88

The book is only about 80 pages, but it is packed with information and ideas, and it also provides
an excellent example of the techniques it advocates. Below are the book's major recommendations
for writing good user manuals (used by permission of the author):

• Establish a clear purpose for the manual

• Analyze your audience

• Gather complete information

• Make sure information is accurate

• Organize for easy reference

• Design the (physical) package to fit

• Format for quick comprehension

• Use visuals and examples liberally

• Use standard conventions and terminology

• Use a clear and concise style

• Edit ruthlessly

I believe that you can vastly improve the quality and usefulness of your user manuals by adopting
these simple principles. Try them and see.

PREPARING TECHNICAL DOCUMENTATION

The technical documentation for a project should be organized in a three-level hierarchy consisting
of a technical overview, a logical synopsis of each software module, and a detailed prototype of
each module (rendered in pseudocode).

At the top level, the primary purpose of the technical overview is to restate the functional
specifications in terms of implementation, dividing the project into discrete tasks and defining each
of them. There will be only one technical overview per project.

The middle level should consist of a logical synopsis of each software module identified in the
technical overview. The function of the synopsis is to outline its subject module at a level of detail
much greater than in the overview, with particular emphasis on logical organization, data
characteristics, algorithms, and processing procedures. There may be many synopses for a project,
but each there will be only one synopsis for each software module.

The bottom level of technical documentation should comprise a detailed prototype of each software
module. Each synopsis will expand into one and only one prototype, and the prototype should
represent an accurate expression of the constructs embodied in the actual source code for the
module. In most circumstances, some standardized pseudocode will be used for the prototype,
although your organization may adopt a different standard.

Explanatory text may be included at any level of the documentation, when needed for clarification.
Try to set explanatory text off from body text by indenting or by using a contrasting type face, and
keep it as short as practical; if explanatory text takes more than a paragraph, that whole section of
the document probably needs to be reorganized.

Flowcharts, diagrams, and other illustrations may also be used to clarify the text of a document. I
find diagrams particularly useful in illustrating error handling sequences, unusual algorithms, or
inter-module communications protocols, but please don't waste time on flowcharts which add little
or no additional understanding to the body of the document!

In some circumstances, the technical overview may be combined with the functional specifications.
Similarly, the module synopses may be combined with the related prototypes, but the key idea is
that the three documentation levels constitute a logical hierarchy which is consistent from one level
to the next, in a process very much like outlining.

THE TECHNICAL OVERVIEW

While the primary purpose of the functional specifications is to state what the project is supposed
to accomplish, the purpose of the technical overview is to provide a high-level statement of how
those goals will be accomplished. At the very minimum, the technical overview should:

• divide the project into specific modules and tasks

• state the purpose of each module and the relationships among modules

• define basic data structures and data flow

• define standards for inter-module communication

• provide some estimate of resource requirements

• fully characterize any external constraints

As stated previously, for simple projects the technical overview can often be combined with the
functional specifications, but remember that the combined document still must effectively serve
two different purposes.

THE MODULE SYNOPSIS

The module synopsis is a logical outline, at a non-detailed level, for each software module defined
in the technical overview, and its primary purpose is to describe the specific procedures the module
employs. The emphasis at this level should be on clearly describing the functionality of each
module without getting into coding details.

Note that each synopsis relates back to a single section of the technical overview, and relates
forward to a single module prototype document.

A module synopsis should include (as appropriate):

• identification of the project

• the module name

• a descriptive title

• the module revision level

• a short description of the purpose of the module (abstracted directly from the

technical overview)

• a processing outline of the module, with emphasis on logical organization, control
and data flow, basic algorithms used, etc.

• explanatory text and/or illustrations

Figure 4 contains an example of a portion of a synopsis excerpted from an actual project.

THE MODULE PROTOTYPE

The module prototype is a detailed expansion of the synopsis into a logically complete "template"
for the software source code, but still expressed in a narrative form (pseudocode) rather than in
program language statements. Since the primary purpose of the prototype is to function as a
"template" for the related source code, it must implement the concepts expressed in the synopsis in
a detailed, logical form which is readily understandable by programmers, analysts, and other
technical personnel.

Note that for each module identified in the technical overview there is a single module synopsis
and a single prototype. Maintaining logical consistency between a synopsis and its related
prototype is extremely important, and the best way to accomplish this is to expand each line of the
processing outline in the synopsis into a stand-alone paragraph heading in the prototype.

Figure 5 contains an excerpt of pseudocode corresponding to the module synopsis example in
figure 4. Note how the documentation structure ÿmakes it very easy to relate the synopsis to ÿthe
corresponding pseudocode.

Each prototype should include (as appropriate):

• the module name and descriptive title

• input and output specifications

• files accessed

• data base records accessed

• "include" files required

• project-specific procedures called (subroutines, functions, etc.)

• system-independent procedures called

• system-dependent procedures called

• external modules (programs) called

• pseudocode

The first draft of a prototype will usually reveal most logical errors present in the synopsis, and
they are much easier (and faster) to correct at this point than at the source code level. And in
addition to helping to identify design errors early in a project, the formal process of logical

expansion from technical overview to synopsis to prototype also encourages good programming
practices in a way that is not oppressive to designers, analysts, or programmers.

THE SOURCE CODE

The hierarchical style of technical documentation should extend down to the source code itself:
each line of pseudocode in the module prototype should appear as a stand-alone comment line in
the source code.

An extremely simple and powerful technique is to use a copy of the module prototype document as
a "skeleton" for the program source file. Editing each line of pseudocode into a stand-alone
comment line quickly yields a "pre-commented" source code file which conforms exactly with the
documentation. I recommend that you also add some unique "signature" characters to each of these
comment lines; I'll show you why later.

Figure 6 is an example of FORTRAN source code corresponding to the synopsis in figure 4 and the
the prototype pseudocode in figure 5. Note that each comment line generated from the
pseudocode includes "==>" as signature characters, while other comment lines do not.

Each line of pseudocode should become the heading for no more than one paragraph of source
code; if you have more than one paragraph of source code per line of pseudocode, it is a clear
indication that the pseudocode is not detailed enough.

CONTROLLING THE PROJECT

If you follow my plan, the documentation will be virtually complete before the coding has gotten
very far along. You can now use the documentation to control the project: system design reviews,
phase checks, and change requests all can be handled entirely in the context of the documentation!

Progress reports, change requests, and problem reports should all be discussed in the context of the
highest level of documentation which will be affected. Clearly, the higher the level of
documentation affected, the greater will be the effects on the whole system design; for example, an
error at the synopsis level will almost always be more severe and pervasive than an error in the
prototype pseudocode, and will require the involvement of higher level project managers.

Progress reports should always be presented in terms of the appropriate level of documentation. A
common problem in software project meetings is that valuable management is wasted in discussing
the programming details of a software module; the real problem is that without documentation
there is nothing to discuss but the code itself. With a good documentation plan, the only reasons to
review the actual code should be for audit purposes, to verify conformance with the prototype
pseudocode, or to review compliance with programming standards.

Similarly, change requests should be submitted in the context of changes to the documentation.
User requests for changes should be submitted as requests for changes to the user reference manual,
and user involvement should be mandatory for any other change requests which will affect the user
manuals.

Problems, or bug reports, should also be submitted in terms of the highest level of documentation
affected. At the coding level, normally an error will require changes to the code alone (a

programming error) or to the prototype pseudocode (usually an algorithmic error); if changes are
required at higher documentation levels, they may point to serious errors in the system design.

Of course, all of the documentation must be updated whenever a change is adopted, for whatever
reason. Just as important, revised documentation should be distributed to all interested parties as
soon as it is accepted. It is extremely important that the revision level of the documentation
currently distributed should always match the revision level of the underlying software.

TESTING AND QUALITY CONTROL

The test phase of a project is also the time to validate the documentation, both for conformance
with the actual software implementation and for logical consistency among documents.

The user reference manual should be a primary component of the project test program. Each and
every statement in the reference manual should be tested and verified. This may seem obvious, but
often it is not done, leading to user manuals which confuse and frustrate users. If a discrepancy is
discovered, either the manual must be changed (with user involvement!) or the software must be
changed to conform with the manual.

The test phase is also a good time to write the user tutorial manual if one is required. If possible,
the primary author of the tutorial should be a user who participates in the software testing. It is
important that each and every instruction in the tutorial be tested and verified, even more than in
the reference manual: an important secondary function of the tutorial is to instill a new user with
confidence in the reliability of the software and the documentation.

A simple and powerful first step in validating the technical documentation for a module is to
generate an abstract of the module source code. The abstract should consist either of all stand-
alone comment lines appearing in the module or just those comment lines containing the special
"signature" characters discussed earlier. The UNIX tool SED(1) can be used to generate the
abstract, or you can use some other CASE tool or even write a simple abstracting program yourself.

Compare the abstract of the source code with the prototype pseudocode; they should be nearly
identical. Figure 7 shows part of an abstract of the source code module which was used for figure
6. Comparing figure 7 with figure 5, it is easy to verify that the software logic faithfully follows
the prototype pseudocode.

If desired, the source code abstract can be "collapsed" further and compared with the module
synopsis documentation. Logical consistency from the abstract to the prototype to the synopsis is
what we are looking for here. Discrepancies between the prototype and the synopsis usually
indicate management problems with project control.

Upon acceptance and release of the software, there should be absolute consistency between each
software module, the documents comprising the technical documentation, and the user manuals.
You should accept nothing less.

A SHORT CASE STUDY

In 1987 and 1988 I worked on a fairly large project in which different modules of the software
were supplied by the client, by a prime contractor, and by my company which was a subcontractor.

This project employed many of the documentation strategies described here, and it was quite
successful.

As a subcontractor, we were provided with a well designed set of functional specifications and a
technical overview which included screen layouts and a narrative description of user interaction
with the system. There were no user manuals, but the technical overview contained enough
information for software development.

No more than three meetings with the client were required per module, with most requiring only
the first and last two:

1) a design review prior to coding, at which the client reviewed and approved the
module synopsis and the prototype

2) if required, a review meeting for significant design changes, with re-approval of the

revised technical documentation

3) the module delivery and acceptance, which involved discussion of the final
documentation and demonstration of the software itself

It is significant that all of the management of our work on the project was conducted in the context
of the documentation, and the only discussions about coding dealt with client standards issues.

Because of a good documentation plan and good management, our work on the project was on time
and within budget. And I think the documentation plan allowed us to do some pretty good work:
more than six months after acceptance, the client has reported exactly zero bugs in our software! In
short, I wish all projects were this successful.

ACKNOWLEDGEMENTS

I hope that you have found some useful ideas for project documentation in my presentation. I
would like to acknowledge the clients and professional colleagues whose ideas helped me in the
evolutionary development of the concepts presented here:

• Paul Chatfield, Hewlett-Packard Company

• Jim Cummins, Allied Signal

• Brian Horn, South Africa Broadcasting Corporation

• Bill Jackson, Allied Signal

• Diane Miller, Jet Propulsion Laboratory

--
3.5 CORRESPONDENT CAPABILITY F-13

 Correspondent capability allows the authorized user
 access to the following functions:

 Task Assignment - The ability to enter an "unknown"
 story after entering the required
 assignment data relating to the story

 Library Search - The user is able to enter a new
 story, edit a story, and update the
 story status. The story entered is
 placed in the COPY INPUT file.

+----------+----------+--------+-----+--------+-----------+
| Program | Sub | Menu | Key | Screen | Procedure |
| Function | Function | | | Page | Page |
+----------+----------+--------+-----+--------+-----------+
| Task | | Main | A | G-8 | H-6 |
| Assign. | | | | | |
+----------+----------+--------+-----+--------+-----------+
| Library | | Main | S | G-14 | H-7 |
| Search | | | | | |
+----------+----------+--------+-----+--------+-----------+
| | Display | Search | f1 | None | H-9 |
| | Story | | | | |
+----------+----------+--------+-----+--------+-----------+
| | Print | Search | f2 | None | H-9 |
| | Story | | | | |
+----------+----------+--------+-----+--------+-----------+
| | Change | Search | f3 | G-10 | H-9 |
| | Story | | | | |
+----------+----------+--------+-----+--------+-----------+
| | Edit | Search | f4 | None | H-12 |
| | Script | | | | |
+----------+----------+--------+-----+--------+-----------+

--------- Figure 1 - Sample User Capability Matrix ---------

--
 SCREEN LAYOUT G-8

 CORRESPONDENT ENTRY

(30) * SABC * 18:34 23/08/84

 REFERENCE AIR DATE DIV STATUS
[___AUTO__] [CCCCCC] [*] [CC]

TITLE [CCCCCCCCCCCCC] EVENT DATE [CCCCCC] SOURCE [****]
LOCATION [*************] EVENT TIME [****]

CATEGORY [**] REPORTER [AUTO] CAMERAMAN A [****]

COMMENTS [***]
 [***]
 [***]
 [***]

NOTE: 1. Fields indicated by an asterisk (*) are those into
 which data may be entered.

 2. Fields indicated by a 'C' are compulsory entry
 fields and if data is not already present in these
 fields it must be entered.

-------------- Figure 2 - Sample Screen Layout -------------

--
 H-6
2.1 TASK ASSIGNMENT

 The news gathering process begins with the input editor
 completing part of a pre-formatted form. It is used by
 the reporters, writers, and output editors. As it
 passes through each phase of broadcast preparation,
 final information about the aired story may be added.

 This form will become the permanent part of the library
 record after the broadcast. The library file includes
 the slug with related film, slide, and tape
 information. Full text archiving is present in the
 system, and the full script is appended to the form.

 The Task Assignment function is used by the Input
 Editors to create new assignments for reporters. It is
 also used by Correspondents when entering new stories
 not previously assigned by an Input Editor.

 To enter the Task Assignment function from the main
 menu display:

 Press A <RETURN>

 The Task Assignment screen (see page G-8) will be
 displayed.

 To create a new assignment you must enter five required
 items:

 1) Air date (this may be a tentative date)
 2) Event date (normally today's date)
 3) Story title
 4) Reporter
 5) Status

 You may optionally enter any available information into
 the other fields on the display. (See section G for a
 description of each data field and its usage.) You
 should enter all information known about the story at
 this time, even though it may change later. Note that
 the Reference Number and Input Editor fields will be
 entered automatically by the system.

---------- Figure 3 - Sample Procedure Description ---------

--

Module Name: ADMON (CMM Module 05.0)

Title: CMM Audit Verification

Revision date: May, 1988 (original)

Description:

ADMON is the program in the CMM Data Base Executive Software
System which implements audit control of Part Programs
throughout their development cycle. ADMON provides a user
audit and update interface to the CMM part program data base
(PPDB) and the QDM data base.

Synopsis:

 A) Initialize program (entry from CMM Main Menu)

 1) Get true terminal LU and attach ADMON to it
 2) Get system data from data block program
 3) Get parameters (e.g., printer LUs) for this
 terminal LU from data block program
 4) Open data base (user IDs) for shared read
 5) Open data base (part programs) for shared read
 6) Initialize FORMS subsystem

 B) Main menu (module 05.1)

 1) Display ADMON main menu (screen AD001)
 2) Wait for user input
 3) Branch according to menu selection:
 f1 - help
 f5 - return to CMM Main Menu (exit)
 f8 - next screen (continue)
 (continue on f8):
 4) Get user ID and password from screen
 5) Validate password
 6) Get user audit capability from data base
 7) Go to Section C (select for audit)

 C) Select part program for audit display (module 05.2)

 1) Display ADMON menu (screen AD002)
 2) Wait for user input
 3) Get part part number, suffix, and equipment

 ----------- Figure 4 - Excerpt of Module Synopsis ----------

--

Section --> (B) <-- Main menu (module 05.01)

Error handling:

All IMAGE and FORMS errors are fatal. The 3rd successive
timeout on the CRT terminal will in all cases result in an
error being logged, followed by an immediate shutdown and
exit.

Processing:

B.01 ==> Display ADMON main menu screen (screen AD001)

Deactivate previous screen (if any)
Activate screen AD001
Display screen AD001
Zero timeout counter

B.02 ==> Wait for user input

Wait for user input
If CRT timeout:
 Increment timeout counter
 If 3rd successive timeout:
 Display timeout message line
 Go to --> G <-- (Shutdown)
 else (1st or 2nd timeout):
 Display timeout message line
 Return to --> (B.02) <-- (Wait for user input)
 endif
else:
 Zero timeout counter
endif

B.03 ==> Branch according to menu selection

If function key f1 'Help':
 Display help screen
 Return to --> B.02 <-- (Wait for user input)

else if function key f5 'Main Menu':
 Set good completion status
 Go to --> G <-- (Shutdown)

else if function key f8 'Next Screen':

---------- Figure 5 - Excerpt of Module Prototype ----------

--

==>*
**==> Main menu (module 05.01) *
==>*

C ==> Deactivate previous screen (if any)

 1000 call F_DEACTIVATEFORM (F_ERROR)
 if (F_ERROR .eq. 0) then ! OK
 continue
 else if (F_ERROR .eq. 13) then ! no form was active
 continue
 else ! FORMS error
 call CMM_LOG_ERROR (5100, F_ERROR, BLANK)
 endif

C ==> Activate screen AD001

 call F_ACTIVATEFORM (AD001, F_INFO, FMP_ERROR,
 & F_ERROR)
 if (F_ERROR .eq. 0) then ! OK
 continue
 else if (F_ERROR .eq. -1) then ! FMP error
 ERROR_STRING = AD001
 call CMM_LOG_ERROR (5102, FMP_ERROR, FMP)
 go to 9000 ! shutdown
 else ! (F_ERROR .ne. 0) ! FORMS error
 call CMM_LOG_ERROR (5104, F_ERROR, FORMS)
 go to 9000 ! shutdown
 endif

C Move terminal LU to screen

 call F_PUTSTRING (SLU, LUT_C, 3, F_ERROR)

C ==> Display screen AD001

 1100 call F_SHOWFORM (F_ERROR)
 if (F_ERROR .eq. 0) then ! OK
 continue
 else ! (F_ERROR .ne. 0) ! FORMS error
 call CMM_LOG_ERROR (5106, F_ERROR, FORMS)
 go to 9000 ! shutdown
 endif

C Move blank employee ID to screen

--------- Figure 6 - Excerpt of FORTRAN Source Code --------

--

==>*
**==> Main menu (module 05.01) *
==>*
C ==> Deactivate previous screen (if any)
C ==> Activate screen AD001
C Move terminal LU to screen
C ==> Display screen AD001
C Move blank employee ID to screen
C Display data fields
C ==> Zero timeout counter
C ==> Wait for user input
C ==> If CRT timeout:
C ==> Increment timeout counter
C ==> If 3rd successive timeout:
C ==> Display timeout message and shut down
C ==> else (1st or 2nd timeout):
C ==> Display timeout message wait for input
C ==> else (user input):
C ==> Zero timeout counter and continue
C*--*C
C* Screen AD001 - f1: Help *C
C*--*C
C ==> If function key f1 'Help':
C ==> Display help screen and wait for input
C*--*C
C* Screen AD001 - f5: Return to main menu *C
C*--*C
C ==> If function key f5 'Main Menu':
C ==> Shut down
C*--*C
C* Screen AD001 - f8: Next screen *C
C*--*C
C ==> If function key f8 'Next Screen':
C ==> Get employee ID number and password from screen
C ==> If employee ID or password is blank:
C ==> Display error message and go wait for input
C ==> Read employee ID record from data base
C ==> If no ID record found:
C ==> Display error message and go wait for input
C ==> Decrypt password from data base record
C ==> If passwords don't match:
C ==> Display error message and go wait for input
C ==> Expand user capability bit map into separate flags
C ==> go to ADMON MENU section (screen AD001A)
C*--*C

------------ Figure 7 - Abstract of Source Code ------------

